Available online at www.sciencedirect.com

S(:lENCE@DIRECT@ JOURNAL OF
: COMPUTATIONAL

PR PHYSICS
ELSEVIER Journal of Computational Physics 215 (2006) 526-551

www.elsevier.com/locate/jcp

Compressible large eddy simulations of wall-bounded
turbulent flows using a semi-implicit numerical scheme for
low Mach number aeroacoustics

Jungsoo Suh, Steven H. Frankel *, Luc Mongeau, Michael W. Plesniak

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088, USA

Received 11 June 2005; received in revised form 19 September 2005; accepted 31 October 2005
Available online 5 January 2006

Abstract

Large eddy simulations (LES) of low-speed, wall-bounded turbulent flows were conducted by numerically integrating
the compressible Navier—Stokes equations in a generalized curvilinear coordinate system. An efficient numerical scheme
based on a third-order additive semi-implicit Runge-Kutta method for time advancement and a sixth-order accurate,
compact finite-difference scheme for spatial discretization were used. The convective terms in the wall-normal direction
were treated implicitly to remove the time-step limitation associated with the use of fine meshes in the near-wall region
for high Reynolds number viscous flows. The dynamic Smagorinsky subgrid-scale eddy viscosity model was used to
close the filtered equations. Generalized characteristic-based non-reflecting boundary conditions were used together with
grid stretching and enhanced damping in the exit zone. The accuracy and efficiency of the numerical scheme was
assessed by simple acoustic model problems and by comparing LES predictions for fully developed turbulent channel
flow and turbulent separated flow in an asymmetric diffuser to previous direct numerical simulation (DNS) and exper-
imental data, respectively. LES predictions for both flows were in reasonable agreement with the DNS and experimental
mean velocity and turbulence statistics. The findings suggest that the numerical approach employed here offers compa-
rable accuracy to similar recent studies at approximately one-third of the computational cost and may provide both an
accurate and efficient way to conduct computational aeroacoustics studies for low Mach number, confined turbulent
flows.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

One challenge of efficient, direct computation of sound radiation from low Mach number turbulent flows is
to relax the CFL restriction related to acoustic waves, while minimizing the amount of numerical dissipation
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Nomenclature

C eddy viscosity model constant
c speed of sound

Cr skin friction coefficient

Co constant pressure specific heat
C, constant volume specific heat

E, F, G inviscid flux vectors
E,, F,, G, viscous flux vectors
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specific total energy

spatial discretization of non-stiff terms

arbitrary variable

large-scale component of variable f

small-scale component of variable f

Favre-average of variable f

test-filtered variable f

variable f averaged over homogeneous spatial plane and time

x —y,4) filter function

spatial discretization of stiff terms

inlet height

identity matrix

Jacobian of coordinate transformation
Jacobian matrix of stiff term in semi-implicit scheme
increment of discretized flow field variable vector
amplitude of characteristic wave

newly updated amplitude of characteristics
Mach number

pressure

Prandtl number

turbulent Prandtl number

second invariant of velocity gradient tensor
vector of dependent variables
subgrid-scale heat flux

heat transfer flux vector

Reynolds number

source term for channel flow computation
source term from the viscous flux vectors
symmetric part of velocity gradient tensor
temperature

Lighthill source tensor

time

bulk velocity

centerline velocity

discretized flow field variable vector
Cartesian velocity components

alternate notation for (u,v,w)

friction velocity

velocity vector

Cartesian coordinates

alternate notation for (x,y,z)

half-height of inlet
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0y Kronecker delta

Y specific heat ratio

K von Karman constant

Ai characteristic velocity of characteristic wave
u dynamic viscosity

v kinematic viscosity

2] dilatation

o density

oy stress tensor

T subgrid-scale stress tensor

Qi antisymmetric part of velocity gradient tensor
(En,0) computational coordinates

A grid-filter width

A test-filter width

O spatial averaging operator

in the numerical schemes. The solution of the incompressible form of the Navier—Stokes equations (NSE) is
advantageous for low Mach number flow simulations. Because the time-step size is only limited by the con-
vective velocity, and not the acoustic velocity. This reduces computational times significantly, but removes
acoustic waves from the system. In the field of computational aeroacoustics (CAA), the direct computation
of both the unsteady flow and the sound generated by it requires the use of the compressible form of the
NSE [1]. In many CAA applications to date, explicit numerical schemes, such as Runge-Kutta methods, have
been used to integrate the semi-discrete form of the compressible NSE in order to provide a better resolution
of acoustic waves. Unfortunately, the resulting system of ordinary differential equations (ODE) is stiff due to
the wide range of eigenvalues, implying severe CFL-based time-step restrictions based on the sum of the
acoustic and convective velocities. This is particularly troublesome for simulating three-dimensional, wall-
bounded turbulent flows designed to address aeroacoustics issues, as these are already computationally expen-
sive due to fine near-wall meshes. Hence, many CAA studies have been limited to unconfined flows, such as
jets, cavities, and airfoil trailing edges [1]. The issue of direct computation of sound from confined turbulent
flows has received relatively little attention in the open literature.

Implicit numerical schemes can reduce the time-step limitation imposed by the CFL condition, but this is
often at the price of increased numerical dissipation of acoustic waves [2]. There are a number of other
approaches designed to avoid the CFL condition that are based on modifying the compressible NSE [2].
These include splitting the NSE [3], extending the pressure-correction approach to compressible flows [4],
or utilizing a preconditioning matrix to accelerate convergence [5,6]. While improving low-Mach number flow
computational efficiency, these algorithms are not time-accurate. They are typically designed for steady flows
applications, and often feature significant artificial damping. Their time accuracy can be addressed through
dual time-stepping, but implementation has usually been limited to second-order accuracy [7]. In addition,
since this approach modifies the governing equations, non-reflecting boundary conditions must be reformu-
lated. Recently Wall et al. [2] developed a semi-implicit algorithm to suppress high-frequency acoustic waves
based on a staggered-grid, second-order, pressure-correction method. For applications where low-frequency
acoustics dominate, such as combustion instability, this may be a viable approach. High-order compact
finite-difference schemes [8] are commonly used for spatial discretization in CAA studies due to their improved
accuracy and efficiency as compared to low-order methods [1,9]. Hence, it is desirable to combine a high-order
accurate spatial scheme with a time-stepping scheme that can efficiently capture acoustic waves at low Mach
number.

Motivated by the above reason, this study combines a third-order, additive, semi-implicit Runge-Kutta
(ASIRK) time-stepping scheme, developed by Zhong [10], with a sixth-order accurate compact finite-difference
spatial scheme [8]. Due to fine grid spacing in the near-wall region of viscous flows or when dealing with fast
thermochemistry, small time steps are needed when using an explicit time integration scheme, making the
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equations stiff. In the semi-implicit approach, stiff terms in the governing equations are treated implicitly to
remove the stability restriction, whereas non-stiff terms are treated explicitly. In the reacting flow problem
studied by Zhong [11], the stiff thermochemical source terms were treated implicitly. In our wall-bounded tur-
bulent viscous flow problem, the convective transport terms in the wall-normal direction are treated implicitly,
with all other terms treated explicitly.

Hence, acoustic wave resolution in the primary flow and sound propagation directions is achieved, with
minimal numerical diffusion effects associated with the implicit scheme in the wall-normal direction, where
physical damping effects are already present. In addition, wall boundary conditions are developed to ensure
implicit advancement of the equations to avoid time-step limitations associated with the use of a fine near-wall
mesh. Dong and Zhong [12] performed a similar study, treating all terms in the wall-normal direction implic-
itly and all other terms explicitly. However, they used explicit centered finite-differencing schemes, which are
known to be less accurate than compact schemes for spatial descritization, and they did not discuss the
handling of boundary conditions associated with the implicit scheme in detail.

In the present study, the ASIRK scheme is used to conduct large eddy simulation (LES) studies of low
Mach number, wall-bounded turbulent flows based on integrating the compressible NSE. In the past few
years, the application of LES to CAA problems has grown [1]. This is because of its ability to simulate
large-scale turbulent flow dynamics at higher Reynolds number and for more complex geometries than direct
numerical simulations (DNS) for the same or lesser grid size. More accurate flow predictions and more insight
into the nature of acoustic sources are two advantages of LES over Reynolds-averaged Navier—Stokes
(RANS) approaches in CAA. In this study, LES predictions are compared to previous computed or measured
results for fully developed turbulent channel flow and separated flow in a planar asymmetric diffuser. The
channel flow results will also be used to generate turbulent inlet conditions for the diffuser simulations.
The goal of this paper is flow-field validation as a first step towards efficient CAA of wall-bounded turbulent
flows.

Fully developed turbulent channel flows are widely used as a benchmark due to their geometrical simplicity
and well-defined boundary conditions. There exists a large number of published DNS and LES studies based
on solving the incompressible NSE. The first reliable results featuring full resolution of the near-wall region
were obtained by Moin and Kim [13] using the Smagorinsky subgrid-scale (SGS) model. Higher Reynolds
number simulations, performed by Piomelli [14], used the dynamic Smagorinsky SGS model. More recent
studies showed that improved accuracy could be obtained using the approximate deconvolution model [15].
Only a few studies have featured the use of the compressible flow equations for turbulent channel flow. Okong
and Knight [16] employed an unstructured finite volume approach for LES of compressible turbulent channel
flows using the Smagorinsky SGS model and obtained reasonable results. Lenormand et al. [17] tested two
kinds of subgrid-scale models for both subsonic and supersonic compressible channel flows and found their
mixed-scale model yields better results for mean flow quantities than the Smagorinsky model. Most recently
Rizzetta et al. [18] conducted LES of low-Mach number turbulent channel flows by solving the compressible
flow equations using high-order compact finite-difference scheme with high-order implicit filters and achieved
reasonable results.

Turbulent flow through a diffuser introduces the added complication of an adverse pressure gradient and
the potential for flow separation. Obi et al. [19] conducted wind tunnel experiments of flow through a planar
asymmetric diffuser, where a very high aspect ratio of the diffuser inlet (1:35) was used to try to maintain
two-dimensional flow. Pressure measurements were made along the flat wall and LDA was used to obtain
mean velocity and Reynolds stress profiles. However, their experiment had several deficiencies associated
with mass conservation due to three-dimensional effects. Buice and Eaton [20] carefully re-created the exper-
iment by Obi et al. using the novel control of sidewall boundary layer leakage and measured mean velocity,
Reynolds stress, skin friction, and pressure at several locations providing a valuable data base for model
validation studies [21].

RANS predictions reported by Obi et al. [19] showed that the standard k—e model failed to predict the
extent of the separation inside the diffuser, and only slight improvement was obtained with a second-
moment closure. Durbin [22] successfully predicted the mean velocity, turbulence intensity, and diffuser
recirculation zone in the Obi experiment using his k—e—v> model. A comparative assessment of several tur-
bulence models, conducted using commercial CFD codes, confirmed Durbin’s findings [23]. Apsley and
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Leschziner [24] tested linear and non-linear eddy-viscosity models, as well as Reynolds stress models, and
found no model was able to correctly resolve the flow near the corner of the deflected wall and highlighted
problems associated with the “flapping” motion of the unsteady separation region. Recently, Gullan-Strand
et al. [25] found that the turbulent kinetic energy dissipation rate associated with their explicit algebraic
Reynolds stress model was overestimated. Kaltenbach et al. [21] obtained LES predictions for mean flow
profiles and coefficients that were in excellent agreement with the experimental data of Buice and Eaton
[20]. Their simulations highlighted flow prediction sensitivity to inlet conditions, for which they employed
an auxiliary turbulent channel flow simulation. They also found the dynamics SGS model they used pro-
vided a significant contribution to the total dissipation rate in their turbulent kinetic energy budget
analysis.

The rest of the paper is organized as follows. The next two sections provide detailed descriptions of the
mathematical equations and numerical methods, respectively. Following this, results from simple test cases
followed by comparisons of LES predictions to previous DNS and experimental data are presented. A brief
summary and conclusion section ends the paper.

2. Mathematical formulation
2.1. Governing equations

The governing equations under consideration here are the unsteady, three-dimensional, compressible,
Favre-filtered, Navier-Stokes equations, written below in non-dimensional, conservative form for a general-
ized curvilinear coordinate system:

0Q OE oF oG

—+—+—+—=S,+8, 1

at+aé+an+ac v+ (1)
where ¢ is time, and &, , and { are EheAcoordipates of the uniformly spaced computational domain. Here, Q is
the vector of dependent variables, E, F, and G are the inviscid flux vectors, S, is the source term from the vis-
cous flux vectors, and S is a vector source term that is non-zero only for the channel flow computations.

The filtered form of an arbitrary flow property f is given by the convolution integral:

4ﬂm=AGu—mMAw@, @)

where G is the filter function, 4 is the filter width, and D implies the entire computational domain. The filters

used in this study will be discussed in Section 3. This allows f to be decomposed into its large-scale (f) and
subgrid-scale (f') components

f=1+1" 3)

In compressible flow, it is customary to use Favre-averaged flow properties defined as:

- _pof
=3 (4)
The vector of dependent variables in Eq. (1) is given as:
p
pit
o-to-t| 5)
VA K
pw
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where u, v, w are the Cartesian velocity components representing here streamwise, spanwise, and normal veloc-
ity components, respectively, J is the Jacobian of the coordinate transformation, p is the density, p is the pres-
sure, and e, is the specific total energy defined as:
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S T
e = Epukuk + ;I% (6)

where the specific heat ratio, y = % (1.4 for air), corresponds to an ideal, calorically perfect gas with constant
specific heats and implies the following state equation:

pT
M

o0

(7)

where T is the temperature and M is the reference Mach number. The inviscid flux vectors in the generalized
coordinates are given by:

E=(1/J)(&E+EF +EG), (8)
F=(1/J)(n,E+n,F+n.G), )
G = (1/))(E+{F + LG), (10)

where E, F, and G are defined as:

S
pi* +p
E= piv |, (11)
piiiv
| (pé. + p)u
S
pitb
F=| pi"+p |, (12)

pow

G= pow . (13)
piv’ +p
(pé, +p)w

The source term S, represents the sum of viscous flux vector derivatives:

oE, OF, oG
L= \ v v ) 14
S= v T (14)
These viscous flux vectors are defined by:
E, = (1/J)(&E, + &F, + EGy), (15)
1A:{‘V = (1/J)('7xEv+'//va+'1va)a (16)
G, = (1/))(LE, + {F, + LGy, (17)

where E,, F,,G, are defined by:
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0
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E, = G2+ T1n , (18)
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respectively. Components of the stress tensor and the heat transfer flux vector are expressed as:

(oo 2,
%~ Re <6xj+6x[ 35"’6xk ’ (21)

= [ ) & @

where f is the non-dimensionalized dynamic viscosity, Re is the Reynolds number, and Pr is the Prandtl num-
ber. The non-dimensional viscosity u and Pr are assumed constant with values of 1 and 0.7, respectively. The
corresponding SGS stress tensor and heat flux vectors are given as:

Note that the pressure and temperature dilatation correlation terms in the filtered energy equation have been
neglected due to the low Mach number of the flows considered here [26].

2.2. SGS turbulence model

The dynamic Smagorinsky SGS model, first proposed by Germano et al. [27] for incompressible flows and
later extended by Moin et al. [28] for compressible flows, is used here. The compressible version of the model
in trace-free form is given as

T — %Tkké,:/ = —2CpA*|S| (Si, - %Skkéij> : (25)
where S;; = 1 (9i;/dx; + di;/2x;) is the filtered stain rate tensor, and |S| = (23,-]-3,-/-)1/2. The isotropic part of the
stress tensor on left-hand side, %rkk, is neglected in this study based on the low Mach number flow assumption.
C is the eddy-viscosity model constant.

In the dynamic Smagorinsky model (DSM), the model coefficient C is computed from the flowfield infor-
mation extracted from the smallest resolved scales by applying a test-filter with width A that is larger than the

grid-filter width, 4. The model coefficients are obtained by considering the difference between the subtest-scale
and the SGS stresses [27-29]:
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_ (L =3 Ludy)My)
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The angled brackets () imply spatial averaging along homogeneous coordinate directions. The coefficient C
was numerically restricted to always be non-negative, disallowing backscatter. Also, the SGS heat flux is spec-
ified in terms of a constant turbulent Prandtl number Pr, as:

Hy or

9, =+t — 29

Pr Ox; ( )
consistent with the low Mach number and nearly uniform temperature distribution of the flows considered in
this study.

3. Numerical methods
3.1. Spatial discretization

First derivatives at interior grid points away from the boundaries, f;, are determined using the following
sixth-order compact finite-difference scheme of Lele [8]:

1, , 1, 7 . )
gf,-_l +f; +§f,-+1 Zw(ﬁﬂ — fi-1) + 36AV( i2—fi2) (30)

shown here for grid point i along the ¢ direction with A¢ as the uniform grid spacing. At the left and right
boundary points, at i =1 and i = N, respectively, the following third-order, one-sided compact schemes are
used:

fi+2= ( Sfi+4/2+ 1), (31)

f/(/ + 2](}(/_1 = (Sflv 4fN71 —foz)' (32)

2A£

For points adjacent to the boundaries, i = 2and i = N — 1, the following fourth-order, central, compact schemes
are used:

1, , 1, 3
Zf1+f2+1f3=m(f3—f1)a (33)

1, y 1, 3
ZfN_z +fN_1 +ZfN = m(fN _fN—2)~ (34)

3.2. Temporal discretization

A three-stage, third-order, additive, semi-implicit Rosenbrock Runge-Kutta method (ASIRK-3C) is used
for time advancement [10]. After spatial discretization, the governing equations can be expressed in semi-
discrete form yielding the following system of first-order ODEs:

QU tw) + 5o, (39)
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where u is the vector of discretized flow field variables and ¢ is time. In this study, u is the vector of conservative
variables divided by J, the Jacobian of the coordinate transformation. The right-hand side of Eq. (35) is split
into two parts g and f, where g represents the spatial discretization of terms deemed stiff and f the spatial dis-
cretization of the remaining non-stiff terms in the equation. The ASIRK-3C scheme numerically integrates Eq.
(35) by simultaneously treating f explicitly and g implicitly:

n+1 =u" +ij iy (36)

i—1 i—1 i—1
| A[Cl, un =+ Zcukj ‘|k = A[{ (ll” + Zbijkj> —+ g (ll" + Z C[jkj> } (for i = 1, 27 3), (37)
—1 = =

J

where At is the time-step size, I is the identity matrix, J = g is the Jacobian matrix for the stiff term g, and «;,
by, ¢;, and w; are parameters determined by accuracy and stablhty considerations [10]. Note J is different from
J which appeared in the context of the coordinate transformation. Implementation details relevant to J will be
discussed in the following section. The parameters used here are:

_1 _1 _3
w1787 w2787 603—4,
ay =0.797097, a, =0.591381, a3 = 0.134705;
8 71 7
b21:77 b3lzﬁa b.’aZZ%)

1
Cy) = 105893, C31 = E, Cip = —0375939,

where ay, a», az, ¢21 and ¢3, are irrational numbers with six significant digits. The double precision values of
these parameters are extracted from Zhong [10].

The explicit part of the algorithm establishes the stability limits for the method. For the third-order Runge—
Kutta scheme, used together with the sixth-order compact scheme, the CFL condition for the pure advection
case (on a periodic one-dimensional domain) is [8]:

cht V3
Ax ~ 1.989’
where ¢ is advection speed and Ax is the step sizes in x. The stability criterion for the pure diffusion case (on a
periodic one-dimensional domain) is given by [8]:
vAt 2.5
- g —
(Ax)* ~ 6.857

where v is a diffusion coefficient. Hence, the stable range of the CFL numbers is limited by the explicit
parts of the scheme and diffusion terms. For the applications in this article, the range is limited between
5 and 7. The ASIRK-3C method is about twice as costly computationally as the fourth-order explicit
Runge-Kutta scheme because of the need to invert a block pentadiagonal matrix system for every stage
of time advancement. Overall, the ASIRK-3C scheme is between 2.5 and 3.5 times more efficient than
the fourth-order explicit Runge-Kutta scheme because the present scheme is able to employ a 5-7 times
larger time-step.

(38)

(39)

3.3. Implementation of ASIRK-3C with the compact scheme

In the present ASIRK-3C implementation, g is taken as the convective terms in the wall-normal direction

and f represents all the other terms in the governing equations. The cponvective terms in the wall-normal direc-
tion can be written as &%, where the Jacobian matrix J becomes 2 (—) Switching the order of differentiation,

this term can be wrltten as g (%G) and then the following equatlon is solved:
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o (3G
I-a2—|— | |k =RHS 40
where o, k, and RHS represent the terms introduced in Eq. (37). Here, %; is another Jacobian matrix, typically
arising in Beam—Warming type implicit schemes [30]. To implement this equation with the compact schemes,

an approach similar to that of Ekaterinaris’ implicit algorithm is used [31]. For nodes away from the bound-
aries, the first-order derivatives are evaluated with the following compact scheme:

1, 1, 7 , 1

gfk—l + /i +§fk+1 = 9TAC( i1 — fi-1) +ﬁ(fk+2 — fi2)- (41)
Applying a similar operation to Eq. (40),

1 o (oG 0 (oG 1 0 (oG

Sy | QP ead kit + [T—o— | — ] |ke+=[T—a—|— k

3[ Y3 <6u> L <6u> ”3[ “ac(au> et

k-1 k k+1
1 1
= 3RHS,, + RHS, + 7 RHS,, . (42)

where each subscript corresponds to the node location in the wall-normal direction ({). Using Eq. (41), Eq.
(42) can be written in the following form:

I 7 (oG I 7 (oG 1 oG
LAY (L TR YOI PSP LAY (A I L () ko
3+9A¢°‘<au> et [k 13 9Ac°‘<au> kel t l36ACa<6u> k-2
k—1 k+1 k=2
1 oG 1 1
— [Ma (6“) » kk+2 = gRHSk,1 + RHSk + gRHSkJrl. (43)

For nodes at or next to the boundaries, a similar approach can be taken with corresponding compact schemes.
Finally, the block pentadiagonal matrix system can be solved.

3.4. Characteristic boundary conditions

Inlet and outlet boundary conditions were specified based on Kim and Lee’s [32] generalized coordinate
version of Poinsot and Lele’s Navier—Stokes characteristic boundary conditions (NSCBC) [33]. The basic idea
behind characteristic boundary conditions is to split the convective terms in the boundary-normal direction
into several waves with different characteristic velocities and then express unknown incoming waves as a func-
tion of known outgoing waves. Brief implementation details for a Cartesian coordinate system will be followed
by details related to extension for a body-fitted coordinate system.

Expressions for the convective terms in the boundary-normal direction with characteristic waves are shown
here:

d(puy)

& L+ % (Ly + Ls)
ﬂ&%—i—m%”l £ (Ly+Ls)
w2 | = -1 |, (44)
ul%z Ls
ulg%? L

where x; is the boundary-normal coordinate, ¢ is local speed of sound, and the L;’s are the amplitudes of char-
acteristic waves each with characteristic velocity 4;:

/ll :;»2:/13:141; }v4:u1—|—c; /‘{5:141—6', (45)
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where A, is the velocity for the entropy advection and 1, and A; are the velocities of u, and u3 advection,

respectively, and A4 and /s are the velocities of sound waves in positive and negative x; direction, respectively.
The L;’s are given by:

L= s (6_) | (46)

At a subsonic outlet, four characteristic waves L, L,, L3, and L4 are leaving the computational domain,

whereas Ls is entering the domain. The amplitude of the Ls incoming acoustic waves is specified according
to:

Ls :Kout[@_poc)/pc]v (47)

where ¢ is a speed of sound and K, is a constant expressed as:
Kow = Gou(1 = M3, )(¢/1). (48)

where /is a characteristic length of the domain and o, = 0 is used here and so Eq. (47) is identical to Thomp-
son’s perfectly non-reflecting boundary condition [34]. At a subsonic inlet, four characteristic waves L, L,, L3,
and L, are entering the computational domain, whereas Ls is leaving the domain. Therefore, the amplitudes of
the four waves L, L,, L3, and L4 must be specified. For one of the cases considered here, namely the asym-
metric planar diffuser flow case, results from a separate LES of turbulent channel flow are used to compute L,
L,, L3, and L4 using an approach similar to Poinsot and Lele [33]:

I, — 61/[3

2 — at7

L3:_%7

%fu (49)

Li=-2-"241

4 6t + 5

_pOT p
L=7% +2c(’ D(La +Ls),

where Ls is calculated from interior nodes because it is an outgoing wave.

The use of a curvilinear coordinate system to handle more complicated geometries is common in CFD. The
approach of Kim and Lee [32]is used here to generalize the characteristic based boundary conditions described
above. The generalized characteristics are calculated by the following matrix operation:

Lok o (¢ o (& 0 (¢
L=P'J{ —— |E~ (Z)+F(Z)+G (2 50
{65 {65<J)+ 6€(J>+ aé(J ’ 30
where L is now the vector of the characteristics amplitude in curvilinear coordinates, J is the Jacobian asso-

ciated with the coordinate transformation, the terms in the square bracket are suggested by Kim and Lee [32]

to preserve the conservative form of the governing equations in generalized coordinates and P~ is a matrix of
the form:
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[ Bl (G-D&E  G-DEE+E (-DsE -2 L&
Bl  (-DgL-5 0-DEE -DEL+y -G
pl= B, L (V—l)%éﬁr% (-D3E -5 (-DxE  -5E |
. (%M2 - —') C, -1, C. 1, C. L =
& (M2 +2) C_ -, C_ -1, C_ -1 =l

where the vectors used in this matrix are defined as follows:

B, = {1—[(y—1)/2M*}1: — (1/p)(vx k), Ci=%(1/p) —[(y = 1)/pc]v,

lzz(éméy,a):(1/\/«:i+¢§+f§><éx,éy,<z>, L=(1,0,0, 1=(0,1,0), L=(0,01),

where v is a velocity vector. Next L is converted to L* following Eq. (49), where L* is the newly updated
amplitude of the characteristics from the boundary conditions. In generalized coordinates, the characteristics
are expressed by the following equation:

OR;
o¢
where characteristic velocities A; and R are expressed as follows:

SR = [5p — (1/)op, 6W, &V, (1/pe)dp+ 38U, (1/pe)sp—sU]",

T
= [U, U, U U+ JE+E+E, U—c,/§§+é§+é§] :

U = éxu + éyv + ézwa
0U = Edu+ &0+ Edw, OV = —E v+ Edu, W = Edw — Edu.

L= (i=1,2,...,5), (51)

Then the conservation-form, normal-flux derivative term can be corrected with the following relation:

S AN d (& d (¢ 0 (&
(&) 5[ (5) v (5) v () )

where P is given by the following matrix:

g, g, g, £ £
ué,  ué, —p& ul+p¢, Lu+ée)  Lu-ic)
P= | +p& vé,  vE—p&  L+&e) Lw-E&o |
wé, —p&, wé, +pE  wi Lw+ée)  Lw-C&o)
b1, b-1, b-l. L(H+evl) L(H—cv 1)

where b and H are defined as follows:
b=(v}/2):+p(vx L), H=/2+c/(y—1).

Additional viscous conditions are needed when computing viscous flows for a well-defined problem [33]. The
normal stresses at the inlet and the tangential stresses and the normal heat flux at the outlet were specified to
have zero spatial gradient in the direction normal to the boundaries.

An approach similar to Giles [35] is used here for the wall boundaries. The approach is based on Fourier
analysis, whose details are not included here. First, consider matrix G that transforms the conservative vari-
ables to the primitive variables as follows:
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op g,
ou 0q,
ov | =G| dqg; |, (53)
ow 044
op g

where G represents the following matrix:

1 0 0 0 0

—u/p l/p 0 0 0

G= —v/p 0 1/p 0 0
—1/p 0 0 1/p 0

S+ W) —(=Du —(=Dp —(— 1w y-1

Also, matrix H transforms the primitive variables to the characteristics variables and can be expressed as
follows:

L, op
L, ou
Ly | =H]| ov |, (54)
Ly ow
Ls op

where H is given by the following matrix:

1 0 0 0 -1/&
L 0 &L o 0
H=|4 &L 0 0 0 |,
0 & &L L 1/pe
0 ¢ -4 L 1/pc

where ( is the wall-normal direction. Following this, we can define a matrix M for wall boundary conditions.
Since all velocity components are zero at the wall boundaries, the wave amplitudes L, L,, and L; are all zero.
For the upper boundaries (where { = {,,.x), wave Ly is outgoing and Ls is incoming. With zero velocity condi-
tions, local one-dimensional inviscid relations suggest:

Ls = Ly. (55)

Note that the wave direction is changed for the lower boundaries (where { = {;). Consequently, this condition
can be written in the following matrix form:

L L
L L,
L =M|L |, (56)
L Ly
L Ls

where M is given by:
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000 0O
00 00O
00 00O for { = (max,
00010
M — :0 0 0 1 0:
000 0O
000 0O
00 0 0 O for { ={,.
0 0 0 01
00 0 0 1]

Upon updating the characteristic wave amplitudes, new boundary values can be computed using the inverse
matrices, G~ or (HG)™". In the original approach of Giles’ these boundary-condition updates are processed
explicitly at the end of each stage of time advancement [35]. However, here the wall boundary conditions need
to be implemented implicitly because of the implicit treatment of the wall-normal convection terms. Thus, these
whole matrix operations are performed as part of calculating the governing equations. An implicit wall bound-
ary condition can be added in the governing equations at the wall boundary nodes by modifying Eq. (40):

0 (oG
oG

where N = (HG) '"MHG. However, it is undesirable to perform matrix multiplication with the term % (—)

k = N - RHS, (57)

Ou

because this term should be modified using compact schemes. Therefore, the following equation is used for
the wall-boundary nodes, replacing Eq. (40)

o (0G
N —a—|=—
Yo (zm)
To obtain the inverse of matrix N, very small values (¢ = 1.0e°) are placed at the diagonal elements of M
matrix instead of zeroes:

k = RHS. (58)

L] L
L L,
Ly| =M"| L |, (59)
L; Ly
L Ls
where M* is given by
[e 0 0 0 O]
0 ¢ 00O
0 0 ¢6 0O for { = {ax,
00 010
00 0 1 €
M =< - 2
e 00 0 O
0 ¢ 00O
0 0 € 0O for { = (.
00 0 € 1
10 0 0 0 I
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3.5. Exit zone for the outflow boundary

The exit-zone approach involves a smooth stretching of grid in the downstream region of the computational
domain [36] and application of an artificial damping of the solution for nodes near the outlet to minimize
acoustic reflections at the outlet boundary [37,38]. Consider coordinate s to be associated with a uniform grid
with spacing As before stretching. The stretched grid coordinate x is given by following relation:

Ax
_ max a(s—st)
x=s5+ As Infe +1], (60)
where
5 = Smax[l + (AxmaX/AS)] — Xmax
b (Axmax/As) ’
In(Axiax/OAs)
s —x,
5= 2% _ 1 Z0.00001
As

with spax as the maximum value of coordinate s. Also, Ax, and Ax,,.x are grid spacings at x,, (the point where
stretching starts) and x,,x (the point where stretching ends), respectively.

In the exit zone, an additional damping term is added to the right-hand side of the governing equations to
drive the flow field toward the desired smooth solution as follows:

a A A ~
a—? = RHS — G(X)(Q - Qtarget)7 (61)

where

3
X — X
p
O'(X) = Omax )
Xmax — xp

a(x) controls the strength of the damping term and 1.0 is used for o,.c. Also, x is the streamwise position,
Xp and Xp,x are the streamwise coordinates of the end of physical region and the end of computational do-
main including exit zone, respectively, Q is the vector of conservative variables, Q. 18 the target solution
in the exit zone and RHS is all terms in Eq. (1) except the time derivative of Q. In the diffuser simulation,
the mean streamwise velocity profiles from the experiment [20] are specified as the target solution in the exit
zone.

3.6. Filters for the LES

Padé-type filters, as derived by Lele [8], are used here for both grid- and test-filter operations associated
with the dynamic Smagorinsky subgrid-scale turbulence model. The form of the filter is given in terms of

Bfia+afiy + it ofiy + Bfia = af; +b(fist + fisr) + c(fiva + fia) +d(firs + fi3), (62)
where £, represents the filtered value of f at the node i and the coefficients are:

a:2+3oc b:9+16oc+10ﬁ c:oc—f—4ﬂ d:ﬁ

4 7 32 ’ 8 32

and o and f8 will be determined by the filter size. The Fourier transform of the filter transfer function G(k) is
given by:

Gk) = a + 2bcos(k) + 2c cos(2k) + 2d cos(3k) .

1 + acos(k) + 2 cos(2k)

Grid filters are defined by the coefficients o = 0.652247 and = 0.170293. These coefficients are derived by
enforcing the following conditions on the filter transfer function, which adjust the location of cutoff of the filer:

(63)
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G(2.0) = 0.95;

G(2.5) = 0.5.
For the nodes near boundaries, the fourth-order explicit filters introduced in Lele [8] are used. The test filters
are defined by the coefficients o = 0.116053 and f# = 0.279615. These coefficients are derived by enforcing the

following conditions on the filter transfer function:

~ (7
6(2) -oss
~ (5

The test filters are only applied in the streamwise and spanwise directions. The filter width ratio, defined as the
ratio of the test-filter to grid-filter widths, is computed using the wave numbers at which the filter transfer
function is equal to 0.5 [39]. Therefore, the filter width ratio is

L 2
4 A T4 A\ (25 .
- M M M — (5) — 1.5 = 1.31037.
1 ' R 3

4. Results
4.1. One-dimensional wave propagation

Before applying the above model to study aeroacoustics of wall-bounded turbulent flows, it is important to
assess the wave propagation capabilities of the semi-implicit method as implemented here. To test this, a code
is written to solve the one-dimensional Euler equations for calorically perfect gas in a unit-length tube. Acous-
tic waves are generated at the left end of the tube by vibrating a virtual piston with amplitude umax/c = 1072
and dimensionless frequency of 5. At the right end of the tube we enforce a perfectly non-reflecting boundary
condition (see Fig. 1). Hence, waves generated by the piston propagate with the mean flow, also about u/
¢ =102, and simply leave the domain. The spatial discretization introduced in Section 3 is used. A plot show-
ing the acoustic pressure waveform after a dimensionless time 1/c of 12.5 (sufficient for the wave to traverse
the entire tube) is shown in Fig. 2 for several different time discretization schemes. The different schemes
correspond to the classical fourth-order explicit Runge-Kutta (RK4) scheme and either explicit or implicit ver-
sions of the ASIRK-3C scheme. The explicit and implicit schemes with the CFL numbers of 0.5 and 2, respec-
tively, give almost identical results with RK4. The implicit scheme with the CFL number of 5 is also in good
agreement with RK4, showing only slight damping. The implicit scheme with the CFL number of 10 produces
unacceptable levels of damping.

In the ASIRK-3C LES implementation, the streamwise and spanwise directions will be treated explicitly
and the wall normal direction implicitly. Hence, it is assumed that acoustic waves are fully resolved (at least
equivalent to what RK4 would produce). Only the wall-normal direction is affected by artificial damping asso-
ciated with the implicit scheme. A refined mesh is used near the wall, and thus the artificial damping effects are
assumed small in the target CFL number range of 5-7. Hence, acoustic waves are expected to be fully resolved
in the simulations.

Nonvreflecting

Flow direction —
outlet

Acoustic wave disturbance

—x

Fig. 1. Schematic of one-dimensional tube to test acoustic wave propagation capabilities of semi-implicit method.
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Fig. 2. Predicted acoustic pressure for the validation case of planar sound waves in a tube: fourth-order explicit RK/CFL=1.0 (o), third-
order explicit RK/CFL = 0.5 (—), third-order implicit/CFL = 0.5 (---), third-order implicit/CFL =2.0 (--—-), third-order implicit/
CFL = 5.0(—--), third-order implicit/CFL = 10.0 (----- - ).

4.2. Acoustic wave propagation in a channel

In order to test the performance of the boundary conditions introduced in Section 3 and the wave propa-
gation in multi-dimensions using the semi-implicit scheme, another test simulation, similar to Mihaescu [40],
was performed. Fig. 3 shows the geometry which consists of rectangular channel (4 x 1 x 1) featuring a smooth
bump on the lower wall specified by:

0 if x <1,
z(x) =4 0.1-{1 —cos[(x — )n]} if 1 <x< 3, (64)
0 if x > 3.

Non-reflecting boundary conditions, introduced in Section 3, are used at both ends of the x-coordinate and
periodic conditions are applied for all variables in the y-direction. At the straight upper wall and curved lower
wall, no-slip reflective boundary conditions are enforced using the formulation already introduced in Section
3. An initial density perturbation is imposed at the center of the domain by following function:

in[0.5n(1 — )] if r <R,
g0 = {0 (65)
0 if >R,

where R is the initial radius of the sphere of the disturbance taken here a 0.25. Also, r is the radial position
(v/x* + y* + 2%). This disturbance initiates wave propagation in the bumped channel. A Reynolds number of
20,000 based on the acoustic speed and channel height was used. A reference Mach number of 0.5 was used,
which is low enough to maintain subsonic conditions everywhere. The maximum CFL number in the wall-normal

Reflecting wall
Non-
reflecting

Non-
reflecting

Reflecting wall /EE\
X Y

Fig. 3. The geometry of a channel with a bumped lower wall.
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direction is 3.897. Fig. 4 shows a time sequence of the pressure distribution at the mid-plane in y-coordinate and
highlights the wave propagation in the bumped channel. It is clear that the reflecting boundary conditions at both
walls work properly. Also, it can be confirmed that the waves simply leave the domain through the non-reflecting
boundary conditions at the side of the channel.

4.3. Turbulent channel flow

LES predictions were obtained for fully developed turbulent channel flow with a Reynolds numbers based
on bulk velocity, Uy, and channel half-height, 6, of 2800, and a Mach number based on bulk velocity of 0.1.
The bulk velocity is defined as:

1 1
Uy = % | udy. (66)
Here, x, y, and z are taken as the streamwise, spanwise and wall-normal directions, respectively. The same
non-dimensional computational domain size as the Re, = 180 DNS case of Moser et al. [41] is used. A con-

Fig. 4. A time sequence of the wave propagation in a channel with a bumped lower wall.
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stant mesh spacing is used in the x and y directions. A non-uniform mesh spacing is used in the z direction
based on the following transformation [13]:

. é tanhétanh " (a)] (67)

with
E=—-142(k—-1)/(Ns—1) (k=1,2,...,N3),

where N3 is the total number of grid points in the z-direction, and « is an adjustable transformation parameter
(0 <a <1); alarge value of a distributes more points near the walls. In this study, a =~ 0.98 is used. Three cases
are simulated and their mesh characteristics are listed in Table 1. Parameter Re, is a Reynolds number based
on the friction velocity. The results of these cases are compared with the DNS results [41] for validation. Peri-
odic boundary conditions are enforced for all variables in the streamwise and spanwise directions. At the
channel walls, the wall boundaries introduced in Section 3 are used. An artificial forcing mechanism is needed
to mimic an imposed streamwise pressure gradient and to maintain a fixed mass flow rate [18]. In this study,
we employ the artificial forcing algorithm suggested by Rizzetta et al. [18] for the source term appearing in Eq.
(1). The vector source term S is defined by:

S = (1/)[0, 51,55, 53, 80i;] - (68)

Considering the steady two-dimensional limiting form of the momentum equation in the streamwise direction
and integrating over the channel height, we obtain:

o (o] (.3}

Sy = 83 = 0, (70)

where the terms in square brackets imply averaging over the lower or upper channel walls. A Poiseuille par-
abolic streamwise velocity profile is used to initialize the streamwise velocity and random velocity fluctuations
were superimposed on all three velocity components [17]. The flow field begins to reach a turbulent state after
about 40,000 steps and 120,000 steps were sufficient for the flow to develop into a fully turbulent state. The
maximum CFL number in the wall-normal direction in all simulations is about 6 and flow statistics were col-
lected for 120,000 steps for each case. The code employs a streamwise domain decomposition and the MPI
inter-processor communication libraries to facilitate parallel computation on an IBM-SP computer. For grid
F case, a total of about 270 CPU hours on 16 processors were needed with communication time about 30% of
total computation time.

Predicted mean flow variables for all cases presented in this paper, along with the DNS results of Kim et al.
[42], are shown in Table 1. U,/ Uy, Crand U/ are the ratio of centerline velocity to bulk velocity, skin friction
coefficients based on the bulk velocity and centerline velocity, normalized by the friction velocity u.,
respectively.

The mean centerline velocities for all cases are in very good agreement with the value 1.158 obtained from
the correlation of Dean [43]:

Ue/Uy = 1.28(2Re,) "M, (71)

The skin friction coefficient, Cy, computed for grid F, is within 10% of the value 8.438 x 10~ given by Dean
[43]:

Table 1

Simulation parameters for turbulent channel flow

Grid LixLyxLs N X Nyx N; Re, Rey, U/ U, Cr Ut
C dn X 4/3n % 2 48 x 48 x 49 165.42 2800 1.14 6.80x 107 19.49
M A x 4/3nx 2 64 x 64 x 65 171.73 2800 1.14 7.37x1073 18.78
F dn X 4/3n % 2 80 x 80 x 81 174.13 2800 1.14 7.60 x 1073 18.56
DNS [41] 4nx4/3nx 2 128 x 128 x 129 178.13 2800 - - 18.30

DNS [42] 4nx2nx2 192 x 160 x 129 180.00 2800 1.16 8.18x107? 18.20
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Cr = 0.073(2Re,) *%. (72)

It should be noted that Dean’s correlation is for the Reynolds number range: 6.0 x 10° < Re < 6.0 x 10° which
is higher than the present case. The LES results on grid F are within 7% of the DNS value and the mean cen-
terline velocities are also in good agreement with the DNS values.

In the simulations, all mean values and root mean square (RMS) values are averaged over x—y planes with
only periodic boundaries. Fig. 5 shows the time-averaged streamwise velocity profile, normalized by the fric-
tion velocity, on a logarithmic axis. For grid M and F cases, the graphs show good agreement between the
present LES results and the previous DNS results [41], especially in the viscous sublayer (z* < 5) and logarith-
mic region. There is a slight overprediction of about 2% near the centerline that is most likely due to enhanced
dissipation leading to an underprediction of the skin friction velocity «, due to the combined influences of the
subgrid-scale model, the mesh resolution, and the other numerical methods. The LES studies of Lenormand
et al. [17] and Okong and Knight [16] have observed similar overshoots when using the Smagorinsky SGS
model. Visbal and Rizzetta [44] also found that using both the non-dynamic or dynamic version of the Sma-
gorinsky model produced more dissipative results than results obtained using a high-order compact filtering
procedure without any SGS model [18]. Our LES predictions are in as good, if not better, agreement with the
DNS results than these other LES studies.

The RMS values for all three velocity components, normalized by friction velocity, are shown in Fig. 6,
together with the DNS results [41]. The profile of streamwise velocity fluctuations from the grid F case is in very
good agreement with the DNS results. The location and value of the peak are also well predicted (within 0.05%
relative error and the location is z* = 15). The spanwise and wall-normal velocity fluctuations are also in good
agreement with the DNS data. The effect of grid resolution on streamwise velocity fluctuations is shown in this
figure. A similar trend is observed for the other two velocity components (not shown). The LES result
approaches the DNS result as the mesh is refined. Good agreement is observed between grid M and F cases.

LES predictions of the Reynolds shear stress profile, normalized by »? and plotted in Fig. 7, show a slight
underprediction near z = 0.2. A consistent trend is observed as the grid is refined. It should be noted that for
all profiles, except the streamwise velocity fluctuation, the largest discrepancy occurs in the region near
z=0.15-0.25 or z" = 25-45. This is where the maximum streamwise velocity gradient occurs and where
the SGS stress terms are largest.

Examination of the instantaneous flow structures within the channel reveals characteristic features of fully
developed turbulent channel flow such as regions of large streamwise vorticity concentrated near the walls (see
Fig. 8) and streamwise velocity streaks (see Fig. 9). To further identify large-scale flow structures, an iso-surface
of the second invariant of the filtered velocity gradient tensor Vv superposed on top of contours of streamwise
velocity in a near-wall and transverse plane is shown in Fig. 10. The second invariant Q is:

20

0 TR | TR |
10° 10" + 10°
Z

Fig. 5. Mean streamwise velocity profiles for the channel flow case; logarithmic plot showing comparison to previous DNS data for
different grids.
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Fig. 6. Streamwise, transverse, and spanwise velocity fluctuations for the channel flow case using grid F; comparison to previous DNS
data; effect of grid refinement of streamwise velocity fluctuation.

2
T

<uw>/u;

Fig. 7. Reynolds stress profile for the channel flow case; comparison to previous DNS data for different grids.

0 = 1/2(Q;Q; — S;54), (73)

where Q;; = (u#;; — u;;)/2 and S;; = (&;; + ;) /2 are the antisymmetric and the symmetric components of Vv,
respectively. The dominant coherent structures appear to be elongated, quasi-streamwise vortices of about 200
wall units in length. These structures are inclined about 10° in the vertical plane and tilted about £5° in the
horizontal plane. These observations are consistent with those of Jeong et al. [45].

4.4. Turbulent diffuser flow

4.4.1. Flow field

The second turbulent flow validation test case compares LES predictions of a separated turbulent flow in
the planar asymmetric diffuser with experimental data obtained by Buice and Eaton [20]. The geometry and
computational grid used for this study are presented in Figs. 11 and 12, respectively.

A structured grid consisting of 320 x 64 x 65 points in the streamwise, spanwise, and wall-normal direc-
tions, respectively, is used. A similar mesh clustering method used in the channel flow simulation is used to
resolve the near-wall region in the diffuser. Uniform grid spacing in the spanwise direction was used. The mesh
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Fig. 8. Contour plot of the instantaneous streamwise vorticity in the (y, z)-plane for the channel flow case; grid F.

015 02 025 03 035 04 045 05 055 06 0.65

0 2 4 6 8 10 12

Fig. 9. Contour plot of the instantaneous streamwise velocity in the (x,y)-plane at z* = 4.60 for the channel flow case; grid F.

Fig. 10. Iso-surfaces of the second invariant of velocity deformation tensor superimposed on streamwise velocity contour near the wall at
z* =4.60 and for a transverse plane for the channel flow case; grid F.
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Fig. 11. Drawing of asymmetric diffuser geometry [20].

Inlet Flow Direction —> «———  Exit zone ——)

0 10 20 i 30 40 50 Outlet

Fig. 12. Computational grid (every 2nd node is shown).

in the streamwise direction was stretched to resolve the throat region. Periodic boundary conditions were used
for all variables in the spanwise direction. At the wall, the wall boundary conditions introduced in Section 3
were used. The inlet conditions were specified as a fully developed channel flow at Mach number 0.1
and Re =9000 based on the bulk velocity and the inlet channel half-height. The inlet plane is located at
x/H = —2.5 where the effect of the expansion part on the upstream is negligible [21]. Turbulent inlet conditions
were determined by employing an auxiliary turbulent channel flow simulation (L; X L, X Ly =nH X2H X H,
Ni X N> x N3 = 64 x 64 x 65) similar to that presented in the previous section. The channel flow simulation
provided an unsteady Dirichlet boundary condition through the characteristic boundary condition formula-
tion presented in Section 3. At the outflow of the domain, the characteristic outlet boundary condition and
exit zone, described in Section 3, was used. The exit zone was located from x/H = 27.5 (same to the location
of the outlet in Kaltenbach et al. [21]) to x/H = 61 and employs 14 points out of the 320 grid points used in the
streamwise direction. The width of the diffuser was 2H. The maximum CFL number in wall-normal direction
was again 6. Initially 120,000 steps were used to develop flow field and flow statistics were collected after that
for additional 120,000 steps. A total of about 580 CPU hours were needed on an IBM-SP machine using 32
processors in parallel to complete the simulation.

LES predictions of the mean streamwise velocity, normalized by the bulk velocity, are plotted against the
experimental data in Fig. 13. Agreement between predictions and experimental data is good within the diffuser
region, but discrepancies are noted in the downstream half of the diffuser region possibly due to the insufficient
grid resolution for this region. Wall normal velocity fluctuations are also in reasonable agreement with the
experiment as shown in Fig. 14. Several extended reverse flow regions along the lower deflected wall, with
weaker reversed flow noted on the upper flat wall, can be observed in a contour plot of instantaneous stream-
wise velocity shown in Fig. 15.

4.4.2. Acoustic field
Lighthill transformed the continuity and Navier—Stokes equations to form an exact, inhomogeneous wave
equation whose source term is called the Lighthill source tensor defined as [46]:
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Fig. 14. Wall normal velocity fluctuation x/H + 25 X Wi/ Uy: Present (—), Buice (o).

-0.2-0.1 0 0.102030405060.70809 1 1.1

0 L " " I I L I L I 1 I L L L 1 L L L L
0 5 10 H 15 20 25

Fig. 15. Contour of the instantaneous streamwise velocity in (x, z)-plane for the diffuser flow.
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Fig. 16. Contour of the instantaneous dilatation in (x,z)-plane for the diffuser flow.
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Ty = puu; + 5;(p — p') — 0. (74)

In this equation g;; is the viscous stress tensor. Also p’ =p — p, and p’ = p — p., with p, po and ¢, repre-
senting the far-field pressure, density and sound speed, respectively. The Ffowcs Williams—-Hawking equation
may be used to account for the presence of solid surfaces [47]. In an uniform infinite duct, the sound sources
are dominated by dipole sources due to pressure fluctuations along the walls [48]. A contour plot of the instan-
taneous dilatation @ = 0i;/0x; for the diffuser flow is shown in Fig. 16. Instantaneously, small-scales dominate
the source near the walls of inlet and within the diffuser ahead of the separation zone. Their impact on the
acoustic far-field will be the subject of future work.

5. Conclusion

As a first step towards conducting efficient computational aeroacoustics of wall-bounded turbulent flows,
an LES code has been developed and tested for both attached and separated wall-bounded turbulent flows.
The code combines the low-dissipation and dispersion through the use of a sixth-order accurate, compact
finite-difference scheme for spatial derivatives. The third-order additive semi-implicit Runge-Kutta method
is used for time advancement, treating wall-normal convective terms implicitly and allowing CFL numbers
5-7 times larger than a similar explicit code, while minimizing the amount of numerical damping present in
the solution. Taking into account the additional computational overhead of the semi-implicit scheme, the
algorithm is approximately 3 times faster than a similar accuracy explicit code. Characteristic-based non-
reflecting boundary conditions applied in a generalized curvilinear coordinate system were used with special
modifications at the wall to address the implicit time advancement. LES predictions were in reasonable agree-
ment with previous numerical and experimental data for fully developed turbulent channel flow and turbulent
separated flow in a planar asymmetric diffuser. Future work will focus on applications of this method for CAA
studies of wall-bounded turbulent flows.
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